Investigations of the EPR g Factors for Er^{3+} in $CaMoO_4$

Shao-Yi Wu^{a,b}, Hui-Ning Dong^{b,c}, and Wang-He Wei^a

- ^a Department of Applied Physics, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
- b International Centre for Materials Physics, Chinese Academy of Sciences, Shenyang 110015, P. R. China
- ^c College of Electronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, P. R. China

Reprint requests to S.-Y. W; E-mail: shaoyi_wu@163.com

Z. Naturforsch. **59a**, 341 – 345 (2004); received March 25, 2004

The electron paramagnetic resonance (EPR) g factors g_{\parallel} and g_{\perp} for Er^{3+} in CaMoO₄ are theoretically investigated by using the perturbation formulas of the g factors for a $4f^{11}$ ion in tetragonal symmetry. In these formulas, the contributions to the g factors arising from the second-order perturbation terms and the admixture of various states are considered. The crystal-field parameters for the tetragonally distorted tetrahedra are determined by using the superposition model and the structural data of the impurity Er^{3+} on the host Ca^{2+} site in CaMoO₄. The calculated g factors agree with the observed values. The validity of the results is discussed.

Key words: Electron Paramagnetic Resonance (EPR); Crystal- and Spin Hamiltonians; Er³⁺; CaMoO₄.